Volume 163, number 6

CHEMICAL PHYSICS LETTERS

24 November 1989

ON THE CONNECTION BETWEEN SURFACE ORDERING TRANSITIONS
AND HYDRATION FORCES BETWEEN TWO APPOSED SURFACES

R. PODGORNIK '

J. Stefan Institute, P.O. Box 100, 61111 Ljubljana, Yugoslavia

Received 1 August 1989

We have generalized the hydration force theory by including a surface contribution to the total free energy that depends on the
normal component of the order parameter at the surface. Furthermore we have investigated the characteristics of the repulsive
pressure as a function of intersurface separation in the case where surface free energy exhibits multiple minima, corresponding to
different surface ordering states, and allows transitions between them. We have shown that surface ordering transitions are mir-

rored as breaks in the hydration force curve.

1. Introduction

Hydration force theory, as set forth by Marcelja
and Radi¢ in their seminal work [ 1], brings together
two concepts: the existence of a surface order de-
scribed by a constant (surface) value of the normal
component of a vectorial order parameter and the
form of bulk correlations between water molecules
exemplified by the exponentially decaying correla-
tion function. The repulsive forces emerge as a con-
sequence of the modification of the entropy of water
in between the two surfaces, brought about by the
propagation of surface order from two apposed sur-
faces into the bulk.

There have been several variations on this basic
theme, most notably the nonlocal electrostatic treat-
ment of the correlations [2] or the modifications in
the forces brought about by imposing different
boundary conditions at the surfaces [3]. The con-
clusions obtained from these basically phenomeno-
logical theories are not in contradiction with more
detailed microscopic model calculations [4]. Alter-
native views on the hydration force theory have also
been presented [5].

In this contribution our interests are centered on
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the interrelation between the surface structure, de-
scribed by a surface free energy density, and behav-
ior of intersurface forces. The total free energy of the
interacting system will be, in general, composed of
the bulk energy, that is a regular function of the or-
der parameter and its derivatives, while the surface
energy will be assumed to display distinct minima
(different surface ordering states) in the phase space
defined by the normal surface component of the or-
der parameter. We will show that the equilibrium
state of such a system also imposes a definite form
of the boundary condition on the order parameter,
that can be derived from the total free energy vari-
ation. The main result of this work, based on the
mean-field analysis, is the demonstration that a phase
transition in the surface structure is mirrored in the
intersurface separation dependence of the forces be-
tween the surfaces. Our analysis only applies to sys-
tems where the overall packing symmetry is not af-
fected by the surface ordering transition, i.e. the
geometric arrangement of the interacting surfaces
(e.g. hexagonal lattice in the case of interacting DNA
helices [7]) remains the same before and after the
surface ordering transition. Moreover we will show
that measurement of intersurface forces can provide
valuable information on the free energy character-
istics of an isolated surface.
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2. Analysis

Let us concentrate on the hydration forces be-
tween two surfaces located at z= * 4 and extending
in the x, y directions. Our basic ansatz will be the
free energy of the system as a function of a vectorial
order parameter P, that we can write in the general
form

F= J[%a(divP)2+§ﬂP2] dv+ Eﬁa(Pn)dS. (1)

The first (volume) part of the above free energy is
nothing but the standard form used in the Marcelja—
Radi¢-type theories of the hydration force. The sec-
ond term is new here. It corresponds to the energy
contribution of the isolated surfaces and includes all
the short range forces or packing constraints (it does
not include the hydration self-energy ) operating close
by or at the surfaces. Due to symmetry considera-
tions it can depend only on the normal component
of the vectorial order parameter at the surfaces ( P,).

The equilibrium profile of the order parameter can
be obtained by setting the first variation of the above
free energy functional equal to zero. Variational
equations (Euler-Lagrange equations) decouple into
two terms of which the first one is valid for varia-
tions of the order parameter in the bulk and has the
standard form

ViP+(1/8)P=0, (2)

where &2=a/f. The second equation, stemming from
the variation of the normal component of the order
parameter at the two surfaces, leads to the following
condition:

a(divP)+do(P,)/0P,=0. (3)

Basically the variational equation for the free en-
ergy therefore determines the equilibrium profile of
P as well as the self-consistent boundary condition at
the two surfaces. In the parallel plane case the so-
lution of eq. (2) reads

P= (P, P, P,)=(0,0, P,sinh(z/&)/sinh(h/&)) .

The boundary condition eq. (3) therefore takes the
form

(/&) P, coth(h/E)+da(P,) /0P, =0. (4)

Solution of the above equation gives the surface
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value of P, as a function of /. The Margelja-Radi¢
boundary condition, ie. P,=P; [1], is now re-
covered from eq. (4) if 6(P,) has a Very steep min-
imum at P,, therefore if (Py)=y(P,—Py)? with
y>1. On the other hand the boundary condition
used by Cevc et al. [3] is regained if o(P,) = FpP,,

where F can be interpreted as a constant surface ori-
enting field. Clearly in the limit of infinite separa-
tion eq. (4) states that the equilibrium value of P,
is given by minimizing the total surface energy o’ (P,)
composed of g(P,) and hydration self-energy,

o' (P)=0(P)+(a/28)P7 . (5)

If a(P,) is known, the repulsive pressure can be ob-
tained straightforwardly by solving the self-consis-
tent boundary condition eq. (4) as

p(h)=—1(3/8h) (F/S)
=—1(a/E*)Pi(h) sinh=2(h/¢) . (6)

Evidently the dependence of repulsive pressure on
intersurface separation 24 comes from two sources,
First of all there is the direct interaction between the
two surfaces embodied in the sinh—2(/#/&) factor that
depends only on the form of the bulk correlation
function. The indirect interaction comes from de-
pendence of P, on # and is determined by the form
of (P,) through the self-consistent boundary con-
dition. In the limit of large spacings we remain with
p(h-o0) = —[aP}(0)/&] exp(—2h/¢), where
P, (c0) is determined from the minimum of ¢'(P,).

In what follows we shall consider some nontrivial
models for the surface structure embodied in o(P,).
The basic assumption will be that there exist differ-
ent surface ordering states, described by different
values of P,, that show up as multiple minima in the
o(P,) function. We will show that repulsive forces
operating between the two surfaces can drive tran-
sitions between these different surface ordering states
that in turn modify the characteristics of the forces
themselves. In general, surface ordering transition
will show as a break in the p(h) curve.

3. The second-order transition

Since it presents an analytically tractable case we
shall start with the surface free energy density of the
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form
o(P,)=—3aP}+;bPy,

with a, b>0. The equilibrium state of an iso-
lated surface is now obtained from eq. (4) with
h—co, leading to a single stable state, viz. P,=
[(a—a/E)/b]'/?, if we suppose that a—a/E>0. As
the second surface approaches the equilibrium con-
figuration is modified, depending on the value of A.
The stable solutions of eq. (4) are now given as

P,=0,
a—(a/&) coth(h/E) <0, (7)
(a- (a/&) coth(h/é))l/z
Pn= ’
b
a—(a/&)coth(h/&)=0. (8)

Clearly the situation for a finite /4 is more complex
than in the case of a single, isolated surface. There
exists a finite value of h=h,, given by the solution
of a— (a/¢&) coth(h./&) =0, where there is a contin-
uous (second-order) transition from a state with
nonzero P, to a state with P,=0. If a—a/&<0, then
P,=0 is the stable configuration at all values of 4.

The corresponding free energy obtained from eq.
(1) can be written as

1 [a—(a/&) coth(h/E)]?
2 b ’

F/S=—

if a— (/&) coth(h/&) = 0. Otherwise it is zero. The
transition from the state with P,#0 to the state with
P,=0 is therefore accompanied with a break in the
curve describing the dependence of the free energy
on the separation, see fig. 1. The same situation is
seen for pressure as a function of 4 that can be ob-
tained as

p=—4(a/é)[a—(a/¢) coth(h/&)]sinh =2 (h/&)

if a— (/&) coth(h/&) =0 and zero otherwise. The
second-order phase transition in P,, triggered by in-
teractions between the two surfaces, is therefore
transformed into a break in the curve describing the
interaction free energy as a function of A. The in-
tersurface forces therefore drive the surfaces from one
stable state into another one, the transition itself
being accompanied by a brake in the functional de-
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Fig. 1. Dependence of the free energy on 4 in the case of a second-
order surface ordering transition. The break in the curve is ob-
tained for A= h,, where k. is the solution of a— (a/&) coth(h./
£)=0. At large enough values of / the dependence of F(4) is
approximately exponential. The value of Fy/S=—[a— (/) 1%/
2b. At small separations (h—0) the steric repulsion leads to large
positive F.

pendence of the interaction free energy (or equiva-
lently pressure) on A.

4. The first-order transition

We shall next treat the case where the total surface
free energy density o'(P,), that includes the hydra-
tion self-energy as in eq. (5), has two distinct min-
ima, P, and P, both at nonzero values of P,, see fig.
2. An analytical solution of eq. (4) in this case is not
readily available and we shall make use of the graph-
ical construction similar to the one used by Cahn in
his analysis of the wetting transition [6]. First of all
we note that we can rewrite the surface part of the
Euler-Lagrange equation eq. (3) as

(a/&)Pa(h)[coth(h/E)—1]+80" (Py) /3P, =0.
(9)

The graphical solution of this equation, P,(#4), is
obtained from the intersection of two curves in fig.
3. At large values of 4 the solution of eq. (9) is lo-
cated close to P, since this state corresponds to the
global minimum of the free energy. Pushing the two
surfaces together P, (/) moves continuously towards
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Pﬂ P1 Pn

Fig. 2. A hypothetical form of ¢'(P,) =0(P,) + (a/2&)P? that
exhibits two minima at different values of P,. The minimum at
P, is supposed to be deeper and it would correspond to a stable
configuration of an isolated surface, i.e. P,(h—co0)=P,.

30'(Py)
aPy

Fig. 3. The solution of eq. (9) is given as the intersection of the
straight lines with da'( P,)/dP,, where the hypothetical form of
a'(P,) is shown in fig. 2. The straight lines correspond to linear
terms (in P,) in eq. (9) with the coefficient proportional to
coth(h/&)—1. Each line, labelled (2, 3, 4, 5), corresponds to a
different value of A, h; ., <h,. At a critical value of h=h,=h_ there
is a jump from one branch of the o'(P,) curve, close to the sur-
face ordering state described by P,, to the other one close to P,
The stable solutions of eq. (9) are shown as open circles.

smaller values until at a critical value of A=h, it
jumps from one stable branch of the ¢’(P,) curve to
another one. The value of 4. is given as a solution of
eq. (9) and

—(a/&)[coth(he/&) —1]=8%a'(P,)/OPF .

534

CHEMICAL PHYSICS LETTERS

24 November 1989

If we now plot the corresponding pressure p as a
function of /4, we get an “isotherm” in the (p, #) dia-
gram, fig. 4, where the discontinuity at k. corre-
sponds to the jump in P, at A.. The two branches of
the p(h) curve evidently correspond to different sur-
face “phases” (ordering states) as displayed by the
existence of two distinct minima in the o’(P,) curve.
Since the system is supposed to be in equilibrium
there is another condition that we have to take into
account, i.e. the equality of chemical potentials in
the two “‘phase” region of the transition from one
branch of the p(4) curve to the other one. This leads
to the condition

h+
Jhdp:O, (10)
2

which is the Maxwell equal area rule, see fig. 4. The
transition from one branch of the p(/) curve to the
other one can therefore only be accomplished at a
value of p=p, given by eq. (10). At p, the surfaces
would jump from ~2* on one branch of the p(4) curve
to 2~ on the other one (see fig. 4). We can easily
derive the connection between the values of P, at this
transition point and Ah=h* —h~, viz.

[Pa(h™)/Pa(h™)]? exp(2Ah/E) = 1.

p(h)

|
} |
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! |
! |
! |
{ i
| |
| |
| i
| |

h- he h* h

Fig. 4. Dependence of the repulsive pressure, eq. (6), on A. The
two branches of the p(4) curve correspond to two stable branches
of the solution P, (/) obtained graphically on fig. (3). The tran-
sition between the two branches is governed by the Maxwell con-
struction that demands the equality of the two hatched areas.
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There is another general characteristics of the p(/)
curve that we want to discuss. If we try to approxi-
mate p(h) by an exponential function with an ef-
fective decay length ¢, its value for A=A * is different
from its value after the transition at A</ ~. This can
be seen by inspecting fig. 3. For A>h* P,(h) is an
increasing function of 4, meaning that the repulsive
pressure eq. (6) would fall off more slowly with sep-
aration than indicated by the sinh—2(4/¢&) (or
equivalently exp(—24/&) at large enough /) factor.
Therefore in this regime {> & If on the other hand,
as we supposed when drawing fig. 3, o’(P,) is steeper
for P,<P, than it is for P,(h*)<P,<P,, then
P,(h<h~) would be approximately constant, mean-
ing that in this regime {~¢& The assumption of dif-
fering steepnesses of the o'(P,) function is certainly
plausible for highly polar surfaces that would vig-
orously oppose all the states of vanishing or even re-
versed water orientation (proportional to the nor-
mal component of the order parameter).

5. Discussion

In this contribution we have generalized the phe-
nomenological theory of the hydration force by in-
cluding the surface contribution to the total free en-
ergy that leads to a self-consistent form of the
boundary condition. We have used this modification
to analyse the consequences of surface ordering tran-
sitions on the characteristics of the forces acting be-
tween the surfaces. We were able to show that the
first- and second-order surface transitions will show
as breaks in the force curves. Furthermore, in the case
of a first-order transition, the effective decay lengths
of the repulsive pressure before and after the tran-
sition are in general different, depending on the
steepness of the function a(P,) close to the two
minima.

Recent measurements of forces between PEG col-
lapsed DNA helices [7] with hexagonal packing ge-
ometry in the presence of small concentrations of
different ligands such as polyamines, protamine, co-
balt hexamine, Mn and Cd all show clear breaks in
the force curves and different decay lengths before
and after the breaks, all in qualitative agreement with
the statements made above for systems that exhibit
surface ordering transitions. Since these ions appear
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to sit inside the grooves of the double helix rather
than in between the interacting molecules it is nat-
ural to assume that they will mostly affect the local
water ordering at the macromolecular surfaces. Our
formalism would be perfectly suited for description
of such situations. An independent measurement of
the local order (with e.g. 2H-NMR of 2H,0) at the
macromolecular surfaces just before and after the
break in the force curve would provide an additional
criterion whether the situation can really be under-
stood in the framework of surface ordering transi-
tions. Furthermore at large enough concentrations of
ligands one can observe spontaneous collapse of DNA
without any additional PEG stress. This situation is
more complex than in the case of small concentra-
tions since it leads to a symmetry change during the
collapse transition and cannot be understood in terms
of a simple surface ordering transition alone. Ad-
ditional features have to be brought into consider-
ation for those cases [7].

At the end let us add that due to the experimental
means available for the study of interacting surfaces
the primary role is played by the measured repulsive
pressure and not by the form of o(P,). However,
based on our analysis, there exists a neat way to ex-
tract the behavior of ¢'( P, ) from the measured forces.
Starting from eq. (4) we are led to the following con-
nection between o'(P,) and p(h)

0'(Py)—0'(Py)
h
=2 [ p(h) dh=2o(h) [1—exp(~21/0)]

The measurement of forces could therefore provide
us also with direct information on the surface free
energy density of an isolated surface as a function of
P,. No hypothetical form of ¢(P,) would have to be
assumed but could be derived directly from experi-
ment. We shall follow this line of reasoning in a sep-
arate publication.
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